If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5(x^2)+2.8(x)=1
We move all terms to the left:
5(x^2)+2.8(x)-(1)=0
a = 5; b = 2.8; c = -1;
Δ = b2-4ac
Δ = 2.82-4·5·(-1)
Δ = 27.84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2.8)-\sqrt{27.84}}{2*5}=\frac{-2.8-\sqrt{27.84}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2.8)+\sqrt{27.84}}{2*5}=\frac{-2.8+\sqrt{27.84}}{10} $
| 46=6+8y= | | k/6=17/13 | | 3n-6=9n-54 | | 9=2y+5= | | 11/2+b=14 | | 1y+8=16= | | 2/3g-6=22 | | 35=8+9y= | | 3/2+b=14 | | 8(2x+3x+2)=-4+123 | | -n+8=-3n+12 | | 10x-17=9(x) | | 1+2y=12= | | 4x^2-20x+75=0 | | 6(y+5)+3(y-2)=24 | | 8(2x-3)=10x+6(x-4) | | 7u=3u+16 | | 4.55=x+1.3 | | x^2-2x-8=22/3 | | 18+x=2x+56 | | 1/4d=-3 | | -1-f/3=4 | | 14+40x^2-51x=0 | | 4y-6=3y-3 | | 7x+10=-77 | | 12z+4=2(5z+8)+-12 | | 3x^2=10^10 | | 7y+4=60= | | 9-390x=14-240x | | 3(x-2)+7=3x-2x+5 | | 7(10x+8)=896 | | 8.5w-3=5.5w+3.4 |